Fluid nonlinearities effect on wake oscillator model performance
نویسندگان
چکیده
Vortex-induced vibrations (VIV) need to be accounted for in the design of marine structures such as risers and umbilicals. If a resonance state of the slender structure develops due to its interaction with the surrounding fluid flow, the consequences can be severe resulting in the accelerated fatigue and structural damage. Wake oscillator models allow to estimate the fluid force acting on the structure without complex and time consuming CFD analysis of the fluid domain. However, contemporary models contain a number of empirical coefficients which are required to be tuned using experimental data. This is often left for the future work with the opened question on how to calibrate a model for a wide range of cases and find out what is working and is not. The current research is focused on the problem of the best choice of the fluid nonlinearities for the base wake oscillator model [1] in order to improve the accuracy of prediction for the cases with mass ratios around 6.0. The paper investigates six nonlinear damping types for two fluid equations of the base model. The calibration is conducted using the data by Stappenbelt and Lalji [2] for 2 degrees-of-freedom rigid structure for mass ratio 6.54. The conducted analysis shows that predicted in-line and cross-flow displacements are more accurate if modelled separately using different damping types than using only one version of the model. The borders of application for each found option in terms of mass ratio are discussed in this work, and appropriate recommendations are provided.
منابع مشابه
The Lock-in Phenomenon in VIV using A Modified Wake Oscillator Model for both High and Low Mass-Damping Ratio
In the present paper the behavior of an elastically mounted cylinder in low and high mass-damping ratio is investigated. For high mass-damping ratio, a classical wake oscillator model is used. At the first, by neglecting all damping and nonlinear terms of this model, the possibility of using a linear model for determination of the lock-in range and the dominant mode is investigated. Then, w...
متن کامل2DOF CFD Calibrated Wake Oscillator Model to Investigate Vortex-Induced Vibrations
In this study a new two degrees-of-freedom wake oscillator model is proposed to describe vortex-induced vibrations of elastically supported cylinders capable of moving in cross-flow and in-line directions. Total hydrodynamic force acting on the cylinder is obtained here as a sum of lift and drag forces, which are defined as being proportional to the square of the magnitude of the relative flow ...
متن کاملModified mathematical model for variable fill fluid coupling
Variable fill fluid couplings are used in the speed control units. Also, variation in coupling oil volume is used in adapting one size of coupling to a wider range of power transmission applications. Available model for the partially filled fluid couplings, has a good performance for couplings with fixed amount of oil but their performance will be degraded if they are used for the variable fill...
متن کاملAnalytic Approach to Investigation of Fluctuation and Frequency of the Oscillators with Odd and Even Nonlinearities
In this paper we examine fluctuation and frequency of the governing equation ofoscillator with odd and even nonlinearities without damping and we present a new efficientmodification of the He’s homotopy perturbation method for this equation. We applied standard andmodified homotopy perturbation method and compare them with the numerical solution (NS), also weapplied He’s Energy balance method (...
متن کاملModel of a proposed superconducting phase slip oscillator: a method for obtaining few-photon nonlinearities.
We theoretically investigate a driven oscillator with the superconducting inductance subject to quantum phase slips (QPS). We find uncommon nonlinearities in the proposed device: they oscillate as a function of the number of photons N with a local period of the order of √N. We prove that such nonlinearities result in multiple metastable states encompassing few photons and study oscillatory depe...
متن کامل